运算符优先级 determines how operators are parsed concerning each other. Operators with higher precedence become the operands of operators with lower precedence.
The source for this interactive example is stored in a GitHub repository. If you'd like to contribute to the interactive examples project, please clone https://github.com/mdn/interactive-examples and send us a pull request.Consider an expression describable by the representation below. Note that both OP 1 and OP 2 are fill-in-the-blanks for OPerators.
a OP1 b OP2 c
若
OP
1
and
OP
2
have different precedence levels (see the table below), the operator with the highest precedence goes first and associativity does not matter. Observe how multiplication has higher precedence than addition and executed first, even though addition is written first in the code.
console.log(3 + 10 * 2); // logs 23 console.log(3 + (10 * 2)); // logs 23 because parentheses here are superfluous console.log((3 + 10) * 2); // logs 26 because the parentheses change the order
Left-associativity (left-to-right) means that it is processed as
(a OP
1
b) OP
2
c
, while right-associativity (right-to-left) means it is interpreted as
a OP
1
(b OP
2
c)
. Assignment operators are right-associative, so you can write:
a = b = 5; // same as writing a = (b = 5);
with the expected result that
a
and
b
get the value 5. This is because the assignment operator returns the value that is assigned. First,
b
is set to 5. Then the
a
is also set to 5, the return value of
b = 5
, aka right operand of the assignment.
As another example, the unique exponentiation operator has right-associativity, whereas other arithmetic operators have left-associativity. It is interesting to note that, the order of evaluation is always left-to-right irregardless of associativity.
| 代码 | 输出 |
function echo(name, num) {
console.log("Evaluating the " + name + " side");
return num;
}
// Notice the division operator (/)
console.log(echo("left", 6) / echo("right", 2));
|
Evaluating the left side Evaluating the right side 3 |
function echo(name, num) {
console.log("Evaluating the " + name + " side");
return num;
}
// Notice the exponentiation operator (**)
console.log(echo("left", 2) ** echo("right", 3));
|
Evaluating the left side Evaluating the right side 8 |
The difference in associativity comes into play when there are multiple operators of the same precedence. With only one operator or operators of different precedences, associativity doesn't affect the output, as seen in the example above. In the example below, observe how associativity affects the output when multiple of the same operator are used.
| 代码 | 输出 |
function echo(name, num) {
console.log("Evaluating the " + name + " side");
return num;
}
// Notice the division operator (/)
console.log(echo("left", 6) / echo("middle", 2) / echo("right", 3));
|
Evaluating the left side Evaluating the middle side Evaluating the right side 1 |
function echo(name, num) {
console.log("Evaluating the " + name + " side");
return num;
}
// Notice the exponentiation operator (**)
console.log(echo("left", 2) ** echo("middle", 3) ** echo("right", 2));
|
Evaluating the left side Evaluating the middle side Evaluating the right side 512 |
function echo(name, num) {
console.log("Evaluating the " + name + " side");
return num;
}
// Notice the parentheses around the left and middle exponentiation
console.log((echo("left", 2) ** echo("middle", 3)) ** echo("right", 2));
|
Evaluating the left side Evaluating the middle side Evaluating the right side 64 |
Looking at the code snippets above,
6 / 3 / 2
如同
(6 / 3) / 2
because division is left-associative. Exponentiation, on the other hand, is right-associative, so
2 ** 3 ** 2
如同
2 ** (3 ** 2)
. Thus, doing
(2 ** 3) ** 2
changes the order and results in the 64 seen in the table above.
Remember that precedence comes before associativity. So, mixing division and exponentiation, the exponentiation comes before the division. For example,
2 ** 3 / 3 ** 2
results in 0.8888888888888888 because it is the same as
(2 ** 3) / (3 ** 2)
.
In the table below,
Grouping
is listed as having the highest precedence. However, that does not always mean the expression within the grouping symbols
( … )
is evaluated first, especially when it comes to short-circuiting.
Short-circuiting is jargon for conditional evaluation. For example, in the expression
a && (b + c)
, if
a
is
falsy
, then the sub-expression
(b + c)
will not even get evaluated, even if it is in parentheses. We could say that the logical disjunction operator ("OR") is "short-circuited". Along with logical disjunction, other short-circuited operators include logical conjunction ("AND"), nullish-coalescing, optional chaining, and the conditional operator. Some more examples follow.
a || (b * c); // evaluate `a` first, then produce `a` if `a` is "truthy" a && (b < c); // evaluate `a` first, then produce `a` if `a` is "falsy" a ?? (b || c); // evaluate `a` first, then produce `a` if `a` is not `null` and not `undefined` a?.b.c; // evaluate `a` first, then produce `undefined` if `a` is `null` or `undefined`
3 > 2 && 2 > 1 // returns true 3 > 2 > 1 // Returns false because 3 > 2 is true, then true is converted to 1 // in inequality operators, therefore true > 1 becomes 1 > 1, which // is false. Adding parentheses makes things clear: (3 > 2) > 1.
The following table is ordered from highest (21) to lowest (1) precedence.
| 优先级 | 运算符类型 | 结合性 | Individual operators |
|---|---|---|---|
| 21 | Grouping | n/a |
( … )
|
| 20 | 成员访问 | 从左到右 |
… . …
|
| 计算成员访问 | 从左到右 |
… [ … ]
|
|
new
(with argument list)
|
n/a |
new … ( … )
|
|
| Function Call | 从左到右 |
… (
…
)
|
|
| Optional chaining | 从左到右 |
?.
|
|
| 19 |
new
(without argument list)
|
从右到左 |
new …
|
| 18 | Postfix Increment | n/a |
… ++
|
| Postfix Decrement |
… --
|
||
| 17 | Logical NOT | 从右到左 |
! …
|
| Bitwise NOT |
~ …
|
||
| Unary Plus |
+ …
|
||
| Unary Negation |
- …
|
||
| Prefix Increment |
++ …
|
||
| Prefix Decrement |
-- …
|
||
typeof
|
typeof …
|
||
void
|
void …
|
||
delete
|
delete …
|
||
await
|
await …
|
||
| 16 | Exponentiation | 从右到左 |
… ** …
|
| 15 | Multiplication | 从左到右 |
… * …
|
| Division |
… / …
|
||
| Remainder |
… % …
|
||
| 14 | Addition | 从左到右 |
… + …
|
| Subtraction |
… - …
|
||
| 13 | Bitwise Left Shift | 从左到右 |
… << …
|
| Bitwise Right Shift |
… >> …
|
||
| Bitwise Unsigned Right Shift |
… >>> …
|
||
| 12 | Less Than | 从左到右 |
… < …
|
| Less Than Or Equal |
… <= …
|
||
| Greater Than |
… > …
|
||
| Greater Than Or Equal |
… >= …
|
||
in
|
… in …
|
||
instanceof
|
… instanceof …
|
||
| 11 | Equality | 从左到右 |
… == …
|
| Inequality |
… != …
|
||
| Strict Equality |
… === …
|
||
| Strict Inequality |
… !== …
|
||
| 10 | Bitwise AND | 从左到右 |
… & …
|
| 9 | Bitwise XOR | 从左到右 |
… ^ …
|
| 8 | Bitwise OR | 从左到右 |
… | …
|
| 7 | Logical AND | 从左到右 |
… && …
|
| 6 | Logical OR | 从左到右 |
… || …
|
| 5 | Nullish coalescing operator | 从左到右 |
… ?? …
|
| 4 | Conditional | 从右到左 |
… ? … : …
|
| 3 | Assignment | 从右到左 |
… = …
|
… += …
|
|||
… -= …
|
|||
… **= …
|
|||
… *= …
|
|||
… /= …
|
|||
… %= …
|
|||
… <<= …
|
|||
… >>= …
|
|||
… >>>= …
|
|||
… &= …
|
|||
… ^= …
|
|||
… |= …
|
|||
… &&= …
|
|||
… ||= …
|
|||
… ??= …
|
|||
| 2 |
yield
|
从右到左 |
yield …
|
yield*
|
yield* …
|
||
| 1 | 逗号/序列 | 从左到右 |
… , …
|