Certain HTML elements use date and/or time values. The formats of the strings that specify these values are described in this article.
Elements that use such formats include certain forms of the
<input>
element that let the user choose or specify a date, time, or both, as well as the
<ins>
and
<del>
elements, whose
datetime
attribute specifies the date or date and time at which the insertion or deletion of content occurred.
For
<input>
, the values of
type
that return a
value
which contains a string representing a date and/or time are:
Before getting into the intricacies of how date and time strings are written and parsed in HTML, here are some examples that should give you a good idea what the more commonly-used date and time string formats look like.
| 字符串 | Date and/or time | |
|---|---|---|
2005-06-07
|
June 7, 2005 | [details] |
08:45
|
8:45 AM | [details] |
08:45:25
|
8:45 AM and 25 seconds | [details] |
0033-08-04T03:40
|
3:40 AM on August 4, 33 | [details] |
1977-04-01T14:00:30
|
30 seconds after 2:00 PM on April 1, 1977 | [details] |
1901-01-01T00:00Z
|
Midnight UTC on January 1, 1901 | [details] |
1901-01-01T00:00:01-04:00
|
1 second past midnight Eastern Standard Time (EST) on January 1, 1901 | [details] |
Before looking at the various formats of date and time related strings used by HTML elements, it is helpful to understand a few fundamental facts about the way they're defined. HTML uses a variation of the ISO 8601 standard for its date and time strings. It's worth reviewing the descriptions of the formats you're using in order to ensure that your strings are in fact compatible with HTML, as the HTML specification includes algorithms for parsing these strings that is actually more precise than ISO 8601, so there can be subtle differences in how date and time strings are expected to look.
Dates and times in HTML are always strings which use the ASCII 字符集。
In order to simplify the basic format used for date strings in HTML, the specification requires that all years be given using the modern (or proleptic ) Gregorian calendar . While user interfaces may allow entry of dates using other calendars, the underlying value always uses the Gregorian calendar.
While the Gregorian calendar wasn't created until the year 1582 (replacing the similar Julian calendar), for HTML's purposes, the Gregorian calendar is extended back to the year 1 C.E. Make sure any older dates account for this.
For the purposes of HTML dates, years are always at least four digits long; years prior to the year 1000 are padded with leading zeroes ("
0
"), so the year 72 is written as
0072
. Years prior to the year 1 C.E. are not supported, so HTML doesn't support years 1 B.C.E. (1 B.C.) or earlier.
A year is normally 365 days long, except during leap years .
A leap year is any year which is divisible by 400 or the year is divisible by 4 but not by 100. Although the calendar year is normally 365 days long, it actually takes the planet Earth approximately 365.2422 days to complete a single orbit around the sun. Leap years help to adjust the calendar to keep it synchronized with the actual position of the planet in its orbit. Adding a day to the year every four years essentially makes the average year 365.25 days long, which is close to correct.
The adjustments to the algorithm (taking a leap year when the year can be divided by 400, and skipping leap years when the year is divisible by 100) help to bring the average even closer to the correct number of days (365.2425 days). Scientists occasionally add leap seconds to the calendar (seriously) to handle the remaining three ten-thousandths of a day and to compensate for the gradual, naturally occurring slowing of Earth's rotation.
While month
02
, February, normally has 28 days, it has 29 days in leap years.
There are 12 months in the year, numbered 1 through 12. They are always represented by a two-digit ASCII string whose value ranges from
01
透过
12
. See the table in the section
Days of the month
for the month numbers and their corresponding names (and lengths in days).
Month numbers 1, 3, 5, 7, 8, 10, and 12 are 31 days long. Months 4, 6, 9, and 11 are 30 days long. Month 2, February, is 28 days long most years, but is 29 days long in leap years. This is detailed in the following table.
| Month number | Name (English) | Length in days |
|---|---|---|
| 01 | January | 31 |
| 02 | February | 28 (29 in leap years) |
| 03 | March | 31 |
| 04 | April | 30 |
| 05 | May | 31 |
| 06 | June | 30 |
| 07 | July | 31 |
| o8 | August | 31 |
| 09 | September | 30 |
| 10 | October | 31 |
| 11 | November | 30 |
| 12 | December | 31 |
A week string specifies a week within a particular year. A
valid week string
consists of a valid
year number
, followed by a hyphen character ("
-
", or U+002D), then the capital letter "
W
" (U+0057), followed by a two-digit week of the year value.
The week of the year is a two-digit string between
01
and
53
. Each week begins on Monday and ends on Sunday. That means it's possible for the first few days of January to be considered part of the previous week-year, and for the last few days of December to be considered part of the following week-year. The first week of the year is the week that conains the
first Thursday of the year
. For example, the first Thursday of 1953 was on January 1, so that week—beginning on Monday, December 29—is considered the first week of the year. Therefore, December 30, 1952 occurs during the week
1953-W01
.
A year has 53 weeks if:
All other years have 52 weeks.
| Week string | Week and year (Date range) |
|---|---|
2001-W37
|
Week 37, 2001 (September 10-16, 2001) |
1953-W01
|
Week 1, 1953 (December 29, 1952-January 4, 1953) |
1948-W53
|
Week 53, 1948 (December 27, 1948-January 2, 1949) |
1949-W01
|
Week 1, 1949 (January 3-9, 1949) |
0531-W16
|
Week 16, 531 (April 13-19, 531) |
0042-W04
|
Week 4, 42 (January 21-27, 42) |
Note that both the year and week numbers are padded with leading zeroes, with the year padded to four digits and the week to two.
A month string represents a specific month in time, rather than a generic month of the year. That is, rather than representing simply "January," an HTML month string represents a month and year paired, like "January 1972."
A
valid month string
consists of a valid
year number
(a string of at least four digits), followed by a hyphen character ("
-
", or U+002D), followed by a two-digit numeric
month number
,其中
01
represents January and
12
represents December.
| Month string | Month and year |
|---|---|
17310-09
|
September, 17310 |
2019-01
|
January, 2019 |
1993-11
|
November, 1993 |
0571-04
|
April, 571 |
0001-07
|
July, 1 C.E. |
Notice that all years are at least four characters long; years that are fewer than four digits long are padded with leading zeroes.
A valid date string consists of a
month string
, followed by a hyphen character ("
-
", or U+002D), followed by a two-digit
day of the month
.
| Date string | Full date |
|---|---|
1993-11-01
|
November 1, 1993 |
1066-10-14
|
October 14, 1066 |
0571-04-22
|
April 22, 571 |
0062-02-05
|
February 5, 62 |
A time string can specify a time with precision to the minute, second, or to the millisecond. Specifying only the hour or minute isn't permitted. A
valid time string
minimally consists of a two-digit hour followed by a colon ("
:
", U+003A), then a two-digit minute. The minute may optionally be followed by another colon and a two-digit number of seconds. Milliseconds may be specified, optionally, by adding a decimal point character ("
.
", U+002E) followed by one, two, or three digits.
There are some additional basic rules:
00
being midnight and 11 PM being
23
. No values outside the range
00
–
23
are permitted.
00
and
59
. No values outside that range are allowed.
00
and
59
. You
cannot
specify leap seconds by using values like
60
or
61
.
| Time string | 时间 |
|---|---|
00:00:30.75
|
12:00:30.75 AM (30.75 seconds after midnight) |
12:15
|
12:15 PM |
13:44:25
|
1:44:25 PM (25 seconds after 1:44 PM) |
有效
datetime-local
string consists of a
date
字符串和
time
string concatenated together with either the letter "
T
" or a space character separating them. No information about the time zone is included in the string; the date and time is presumed to be in the user's local time zone.
When you set the
value
的
datetime-local
input, the string is
normalized
into a standard form. Normalized
datetime
strings always use the letter "
T
" to separate the date and the time, and the time portion of the string is as short as possible. This is done by leaving out the seconds component if its value is
:00
.
| Date/time string | Normalized date/time string | Actual date and time |
|---|---|---|
1986-01-28T11:38:00.01
|
1986-01-28T11:38:00.01
|
January 28, 1986 at 11:38:00.01 AM |
1986-01-28 11:38:00.010
|
1986-01-28T11:38:00.01
1
|
January 28, 1986 at 11:38:00.01 AM |
0170-07-31T22:00:00
|
0170-07-31T22:00
2
|
July 31, 170 at 10:00 PM |
datetime-local
string. The space has been replaced with the "
T
" character and the trailing zero in the fraction of a second has been removed to make the string as short as possible.
:00
" indicating the number of seconds to be zero, because the seconds are optional when zero, and the normalized string minimizes the length of the string.
A global date and time string specifies a date and time as well as the time zone in which it occurs. A valid global date and time string is the same format as a local date and time string , except it has a time zone string appended to the end, following the time.
A time zone offset string specifies the offset in either a positive or a negative number of hours and minutes from the standard time base. There are two standard time bases, which are very close to the same, but not exactly the same:
Z
and the offset indicates a particular time zone's offset from the time at the prime meridian at 0º longitude (which passes through the Royal Observatory at Greenwich, England).
The time zone string is appended immediately following the time in the date and time string. You can specify simply "
Z
" as the time zone offset string to indicate that the time is specified in UTC. Otherwise, the time zone string is constructed as follows:
+
", or U+002B) for time zones to the east of the prime meridian or the minus character ("
-
", or U+002D) for time zones to the west of the prime meridian.
00
and
23
.
:
") character.
00
and
59
.
While this format allows for time zones between -23:59 and +23:59, the current range of time zone offsets is -12:00 to +14:00, and no time zones are currently offset from the hour by anything other than
00
,
30
,或
45
minutes. This may change at more or less anytime, since countries are free to tamper with their time zones at any time and in any way they wish to do so.
| Global date and time string | Actual global date and time | Date and time at prime meridian |
|---|---|---|
2005-06-07T00:00Z
|
June 7, 2005 at midnight UTC | June 7, 2005 at midnight |
1789-08-22T12:30:00.1-04:00
|
August 22, 1789 at a tenth of a second past 12:30 PM Eastern Daylight Time (EDT) | August 22, 1789 at a tenth of a second past 4:30 PM |
3755-01-01 00:00+10:00
|
January 1, 3755 at midnight Australian Eastern Standard Time (AEST) | December 31, 3754 at 2:00 PM |
<input>
<ins>
and
<del>
:见
datetime
attribute, which specifies either a date or a local date and time at which the content was inserted or deleted
日期
对象
Intl.DateTimeFormat
object for formatting dates and times for a given locale