Math.fround() function returns the nearest 32-bit single precision float representation of a Number .

The source for this interactive example is stored in a GitHub repository. If you'd like to contribute to the interactive examples project, please clone https://github.com/mdn/interactive-examples and send us a pull request.

句法

var singleFloat = Math.fround(doubleFloat);
					

参数

doubleFloat
Number . If the parameter is of a different type, it will get converted to a number or to NaN if it cannot be converted.

返回值

The nearest 32-bit single precision float representation of the given number.

描述

JavaScript uses 64-bit double floating-point numbers internally, which offer a very high precision. However, sometimes you may be working with 32-bit floating-point numbers, for example if you are reading values from a Float32Array . This can create confusion: Checking a 64-bit float and a 32-bit float for equality may fail even though the numbers are seemingly identical.

To solve this, Math.fround() can be used to cast the 64-bit float to a 32-bit float. Internally, JavaScript continues to treat the number as a 64-bit float, it just performs a "round to even" on the 23rd bit of the mantissa, and sets all following mantissa bits to 0 . If the number is outside the range of a 32-bit float, Infinity or -Infinity 被返回。

因为 fround() is a static method of Math , you always use it as Math.fround() , rather than as a method of a Math object you created ( Math is not a constructor).

Polyfill

This can be emulated with the following function, if Float32Array are supported:

Math.fround = Math.fround || (function (array) {
  return function(x) {
    return array[0] = x, array[0];
  };
})(new Float32Array(1));
					

Supporting older browsers is slower, but also possible:

if (!Math.fround) Math.fround = function(arg) {
  arg = Number(arg);
  // Return early for ±0 and NaN.
  if (!arg) return arg;
  var sign = arg < 0 ? -1 : 1;
  if (sign < 0) arg = -arg;
  // Compute the exponent (8 bits, signed).
  var exp = Math.floor(Math.log(arg) / Math.LN2);
  var powexp = Math.pow(2, Math.max(-126, Math.min(exp, 127)));
  // Handle subnormals: leading digit is zero if exponent bits are all zero.
  var leading = exp < -127 ? 0 : 1;
  // Compute 23 bits of mantissa, inverted to round toward zero.
  var mantissa = Math.round((leading - arg / powexp) * 0x800000);
  if (mantissa <= -0x800000) return sign * Infinity;
  return sign * powexp * (leading - mantissa / 0x800000);
};
					

范例

使用 Math.fround()

The number 1.5 can be precisely represented in the binary numeral system, and is identical in 32-bit and 64-bit:

Math.fround(1.5); // 1.5
Math.fround(1.5) === 1.5; // true
					

However, the number 1.337 cannot be precisely represented in the binary numeral system, so it differs in 32-bit and 64-bit:

Math.fround(1.337); // 1.3370000123977661
Math.fround(1.337) === 1.337; // false
					

2 150 2^150 is too big for a 32-bit float, so Infinity is returned:

2 ** 150; // 1.42724769270596e+45
Math.fround(2 ** 150); // Infinity
					

If the parameter cannot be converted to a number, or it is not-a-number ( NaN ), Math.fround() will return NaN :

Math.fround('abc'); // NaN
Math.fround(NaN); // NaN
					

规范

规范
ECMAScript (ECMA-262)
The definition of 'Math.fround' in that specification.

浏览器兼容性

更新 GitHub 上的兼容性数据
Desktop Mobile Server
Chrome Edge Firefox Internet Explorer Opera Safari Android webview Chrome for Android Firefox for Android Opera for Android Safari on iOS Samsung Internet Node.js
fround Chrome 38 Edge 12 Firefox 26 IE No Opera 25 Safari 8 WebView Android 38 Chrome Android 38 Firefox Android 26 Opera Android 25 Safari iOS 8 Samsung Internet Android 3.0 nodejs 0.12

图例

完整支持

完整支持

不支持

不支持

另请参阅

元数据

  • 最后修改: